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ABSTRACT 

A ordinary differential equation with stochastic parameters, called SPR_SODE model for the spread of dengue 

fever is considered. Critical Values of bifurcation and the boundary of the above said model are discussed. In this paper, 

the different parameters are considered for further analysis.  The bifurcation at the characteristic value of the non-linear 

eigen value equation is supercritical if 1 0   and subcritical if 1 0  . The equilibrium solution pair in the positive 

octant of 
7R  is also discussed. 
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INTRODUCTION 

Dengue is a disease comes under infectious diseases which is in worldwide. The work of a carrier (i.e) the 

medium for transmitting is performed by the mosquito, “Aedes Ageypti [7]. There are so many models for such infectious 

diseases.  We need a separate model for such a special disease like dengue fever for better results. The asymptotically 

stable equilibrium points or equilibrium solutions can be defined as the equilibrium solutions in which solutions that start 

“near” them move toward the equilibrium solution [1]. In this work, the SPR_SODE model [2], [3], [4]                  

(SPR_Stochastic Ordinary differential Equation model) is considered to analyze further.  All the notions of SPR_SODE 

model [2], [3],[4] are taken for further analysis without any change and the same model is given below. 

SPR_SODE MODEL 
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By converting (A) to fractional quantities and denoting each scaled population by small letters, one can             

get, [2], [3], [4] 
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Now, 
0

R  can be defined as,
0

.
hm mh

R    , [2],[3],[4]           (C) 

where
hm

  and 
mh

  can be written in mathematical notation as,  
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In [2,3,4, S. Dhevarajan et.al, 2013], it was proved that the above said model is asymptotically stable.  It is also 

proved that the domain, existence and uniqueness of the solution of the above said model.  The disease free equilibrium of 

the model is also proved [3]. The solution of the above said model is asymptotically stable[2].  The disease free 

equilibrium solution is also exists [5]. Asymptotically equilibrium points are near to equilibrium points that are near to 

them move toward the equilibrium solution [1]. 

The Existence of Endemic Equilibrium Points of SPR-SODE Model  

The equilibrium equations for (B) are shown below in (E). In this analysis, Here, the terms 
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are representing their respective equilibrium values and not their 

actual values at a given time t.  
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Define new parameter, 
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 / m , to obtain 
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The bifurcation parameter  can be varied, while keeping all other parameters fixed. In terms of the original 

variables, this corresponds to changing 
h
  and m  , while keeping the ratio between them fixed. Consider / mh

  .   

One can choose the ratio   to sweep out the entire parameter space. Hence,   
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Solving for 
m

if 
 

 in (E6) in terms of
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  , one can find 
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By rewriting the positive equilibrium for  
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Using (E12) in (E3), and solving for 
h

rc 
   in terms of

h
if 
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It is given the nonlinear nature of (E2), which is not possible to solve for 
h
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 in terms of 
h

ex 
   explicitly. 

Now, by using (E12) rewrite (E2), and define the function  h h
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for some 
h

ex 
  > 0 and some

m
ex 
   > 0. Define Z as the open and bounded set Z = {  ∈ R|−MZ <   <MZ}. 

This set is defined to include the characteristic values of L, so there is minimum value that MZ can have, but MZ may be 

arbitrarily large with
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Determination of Lower Order Terms 

Now it is to determine lower order terms. (E2) can be written as  ,
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Where  
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The first order approximations to the equilibrium equations can be obtained by substituting (E15) into (E13) and 

(E12), and then all three, along with (E11) and (E10) into the equilibrium equations (E8) and (E9).  Hence,   
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To apply Corollary 1.12 of Rabinowitz [6], we algebraically manipulate (E16) to produce 
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and h( , u) is O(u
2
). The two characteristic values of L by

1 1/ AB   and 
2 1/ AB   . As both A and B are 

always positive, due to our assumption that 
m

BIR 
   >  

m
DID , 1  is real and corresponds to the dominant eigen value of 

L.  The right and left eigen vectors corresponding to 1  are respectively,  
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For MZ > 1 , as 0 ∈ Y, ( 1 , 0)  . We denote the continuum of solution-pairs emanating from ( 1 , 0) by    

1 , where 1   , and from ( 2 , 0) by 2 , where 2   . Let 1 2 1 2, , andZ Z U U are the sets defined by, 
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Now, it is to expand the terms of the nonlinear eigen value equation (E18) about the bifurcation point, ( 1 , 0). 

The expanded variables are 
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Now, consider, 2
1

.

.

w h

w Lv
              (E23) 

Now it is to prove that if v and w are the right and left eigenvectors of L corresponding to the characteristic             

value 1 , respectively, the bifurcation at   = 1  of the nonlinear eigen value equation (E18) is supercritical if 1  > 0 and 

subcritical if 1  < 0. 

Evaluating the substitution of the expansions (E22) into the eigen value equation (E18) at O(ε
2
), we obtain              

u
(2)

 = 1 Lu
(2)

 + 1 Lu
(1)

 + h2, which we can rewrite as  

(I − 1 L) u 
(2)

 = 1 Lv + h2,                                                                                            (E24) 

Where I is the 2 × 2 identity matrix. As 1  is a characteristic value of L, (I − 1 L) is a singular matrix. Thus, for 

(E24) to have a solution, 1 Lv + h2 must be in the range of (I − 1 L); i.e., it must be orthogonal to the null space of the 
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adjoint of (I− 1 L). The null space of the adjoint of (I− 1 L) is spanned by the left eigenvector of L (corresponding to the 

eigen value 1/ 1 ), w (E20). The Fredholm condition for the solvability of (A.24) is w. ( 1 Lv + h2) = 0. Solving for               

1  provides (E23) obviously. If 1  is positive, then for small positive ε, u > 0 and   > 1 , and the bifurcation is 

supercritical. Similarly, if 1  is negative, then for small positive ε, u > 0 and   < 1 , and the bifurcation is subcritical. 

Now, it is to prove that For all u U1, 
h

ex 
   > 0 and 

m
ex 
   > 0. 

From [5], there are no equilibrium points on ∂Y 
+
 other than 

h
ex 
   =

m
ex 
   = 0, so U1 ∩ ∂Y 

+
 = 0. From [5], 

close to the bifurcation point ( 1 , 0), the direction of U1 is equal to v, the right eigenvector corresponding to the 

characteristic value, 1 . As v contains only positive terms, U1 is entirely contained in Y 
+
. Hence, for all                             

u U1, 
h

ex 
   > 0 and 

m
ex 
   > 0. 

Equilibrium in the Boundary of the Positive Orthant 

Now it is to prove that the point u = 0   Y corresponds to 
nodis

x  ∈  R
7
 (on the boundary of the positive               

orthant of R
7
). For every solution-pair ( , u)  1 , there corresponds one equilibrium-pair ( ,

*x )  Z × R
7
, where 

*x  

is in the positive orthant of R
7
. 

First it is to show that u = 0 corresponds to
nodis

x . As 
h

ex 
   = 

m
ex 
   = 0, From [1] & [6], One can argue that 

the only possible equilibrium point is
nodis

x . Now it is to show that for every   Z1 there exists an 
*x  in the positive 

orthant of R
7
 for the corresponding u   U1. (E25) implies

h
ex 
   > 0 and 

m
ex 
   > 0. The equilibrium equation (E11) 

implies for every positive
m

ex 
  , there exists a positive

m
if 
 

. The equilibrium equation for  
m

TP  has a positive and 

bounded solution, depending only on parameter values (E10). Now, 
h

if 
 

 =  h
y ex 

  implies for every positive 

h
ex    there exists a positive

h
if 
 

. The equilibrium equations (E13) and (E12) show that, for every positive 
h

if 
 

 

there exists a positive 
h

rc 
   and 

h
TP . Hence, the point u = 0   Y corresponds to 

nodis
x    R

7
 (on the boundary of the 

positive orthant of R
7
). For every solution-pair ( , u)  1 , there corresponds one equilibrium-pair ( ,

*x )  Z × R
7
, 

where 
*x  is in the positive orthant of R

7
…….(E26) 

CONCLUSIONS 

The different parameters of the SPR_SODE model are considered for further analysis. Here it is proved that the 

bifurcation at the characteristic value of the non-linear eigen value equation is supercritical if 1 0   and subcritical if 

1 0  .  
h

TP .  It is also proved that the point u = 0   Y corresponds to 
nodis

x    R
7
 , on the boundary of the positive 

orthant of R
7
) and  For every solution-pair ( , u)  1 , there corresponds one equilibrium-pair ( ,

*x )  Z × R
7
, where 

*x  is in the positive orthant of R
7
. 
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